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Abstract: We introduce in this paper an exact nonlinear formulation of the multiway cut problem. By
simple linearizations of this formulation, we derive several well-known and new formulations for the
problem. We further establish a connection between the multiway cut and the maximum-weighted
independent set problem. This leads to the study of several instances of the multiway cut problem through
the theory of perfect graphs. We also introduce a new randomized rounding argument to study the
sharpness of these formulations. © 1999 John Wiley & Sons, Inc. Networks 34: 102-114, 1999

Keywords: multicut problems; LP relaxation; randomized rounding

1. INTRODUCTION nodes. The edges between nodes in distinct classes will
correspond to the edges in the multiway cut solution. The

Given a graptG = (V, E) with edge weight, for eache  problem of finding the multiway cut of minimum total

€ E and a set of terminal nodeB = {vq, vy, ..., v} weight is called the multiway cut problem. Wherconsists

C V, a multiway cutis a set of edges whose removal of only two terminals k = 2), the problem is the well-

disconnects every pair of terminal nodes. Equivalently, thisknown minimum-cut problem. Fde¢ = 3, it was shown by

gives rise to a partition of the node set inkoor more  Dalhaus et al. [8] to b&lP-hard even on planar graphs.

classes, each containing exactly one or none of the terminal The casek = 2 is not the only polynomially solvable
instance of the multiway cut problem. Las=a [13] and

A preliminary version of this article appears under the title “Nonlinear CherkaSSk” [4] show that Wheq? =1lVe€EandGis

formulations and improved randomized approximation algorithms for mul-EUl€rian then the multiway cut problem is polynomially
tiway and multicut problems,” E. Balas and J. Clausen (Editors), Proc 4trsolvable. Erdos and Skely [9] showed that a generaliza-
Integer Programming and Combinatorial Optimization Conference, LNCStjon of the mumway cut problem is ponnomiaIIy solvable
920, 29-39, Springer-Verlag, Berlin, 1995, pp. 29-39. . .
: when the underlying grapl is a tree. Dalhaus et al. [8]

Correspondence tdD. Bertsimas .

Contract grant sponsor: Draper Laboratory showed the problem to be polynomially solvable figed k

Contract grant sponsor: NSF; contract grant number: DMI-9610486 on planar graphs.

© 1999 John Wiley & Sons, Inc. CCC 0028-3045/99/020102-13
102



Chopra and Rao [6] and Cunningham [7] investigated the
multiway cut problem using a polyhedral approach. They
derived several valid inequalities and facets. For one par-
ticular formulation of the problem, Cunningham [7] showed
that the value of the minimum multiway cut is at most twice
the value of its linear relaxation. Chopra and Owen [5]2.
proposed an extended formulation of the problem which
was shown to be tighter than all previously proposed. In
addition, when the underlying graph is a tree, they showed
that the extended formulation is integral. They did not,
however, analyze the tightness of their extended formula-
tion, but relied on computational results to show that their
formulation consistently yields high-quality solutions to the
multiway cut problem.

Regarding approximation algorithms, Dalhaus et al. [8]
proposed an 2(1- 1/k) approximation algorithm. Their
approach can also be used to yield slightly improved boundg
for the four-way and eight-way cut problems.

A more general problem that we also consider in the
present paper is thewulticut problem.Given a graphG
= (V, E) with edge weights, for eache € E, and a
demand graphl = (V(H), E(H)), find a minimum weight
set of edges whose removal disconnects each rode
€ V(H) fromt € V(H) if (s, t) € E(H). If V(H) is a
complete graph ok nodes, the multicut problem reduces to
the multiway cut problem. Regarding approximation algo-
rithms, Garg et al. [10] proposed an algorithm that produces
a multicut whose weight is withi®©(log(|V(H)|)) from the
optimal solution.

Our overall goal in this paper is to study theoretically,
using a new randomized rounding argument, the closeness
of the value of the optimal multiway cut and multicut to the
optimal solution value of the formulations proposed in
Chopra and Owen [5]. Furthermore, we show that insights
from the combinatorial approach can be used to sharpen the
LP relaxations for the corresponding problems, using a

simple rounding argument of the underlying fractional so-2,
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tions of the nonlinear formulation. This provides a sys-
tematic way to construct improved extended formula-
tions for the multiway cut problem. In particular, we
derive the extended formulations of Chopra and Owen
[5]-

In Section 3, we establish a connection between the
multiway cut problem and the independent set problem.
This allows us to derive relaxations for the multiway cut
problem that are stronger than previously known. In
addition, we use the theory of perfect graphs to prove the
integrality of some extended formulations of the multi-
way cut problem that have a special structure. In this
way, we identify new polynomially solvable cases. In
particular, we obtain the integrality result of Chopra and
Owen [5] mentioned above and the result of Erdos and
SZkely [9] as a corollary.

. In Section 4, we analyze the tightness of the proposed LP

relaxations for the multiway cut problem by probabilis-
tically rounding the optimal fractional solution of the
associated linear programs. Zf , denotes the optimal
objective function value of the linear relaxation, af)d,

the value of the optimal integer solution, we show that
Zp = 2(1 — 1/K) Z, 5.

4. In Section 5, we show how the techniques developed for

the multiway cut problem apply to the more general
multicut problem. The technique of Dalhaus et al. [8] can
be used to design acZH)(1 — 1/k) approximation
algorithm for the problem. Notice that the bound is a
direct generalization of the bound for the multiway cut
problem. In addition, it is different from the
O(log(|E(H)|)) bound derived by Garg et al. [10]. We
exhibit in this section a natural formulation that attains
the same bound.

AN EXACT NONLINEAR FORMULATION

lutions. The randomized rounding approach proposed in thiaND ITS LINEARIZATIONS

paper has also found applications in several other problems;
see, for instance, Bertsimas et al. [3] and Teo and Bertsima]
[15].

Our contributions and the structure of the paper are a
follows:

S . . . .

n this section, we present a continuous nonlinear formula-
gion for the multiway cut problem, prove its validity through
randomization, and linearize it to obtain tighter linear re-

laxations.

1. In Section 2, we express the multiway cut problem as a
continuous nonlineaprogram. The formulation is exact
in the sense that its optimal solution is integral. The fact
that a 0—1 integer program can be expressed exactly as
compact nonlinear program is not surprisingxlis a
0-1 variable, this can be expressedxés — x) = O.
What is of interest is that the constraints of our formu-
lation are linear. The nonlinear formulation provides a
framework for the study of extended formulations. Many
of the known standard and extended formulations and
valid inequalities can be derived from simple lineariza-

a
on

Let T = {vq, vy, ..., v} denote the set of terminal

nodes. Lety/(u) denote the decision variable that node
belongs to the same component@sin a multiway cut.
Since the edgeu; v) belongs to the multiway cut if and
ly if y!(u) andy!(v) are distinct for somg, the following

is clearly a valid nonlinear formulation of the multiway cut
problem:

(NF)Zye=min X c(u, 9)(1 = 2 y(u)y(v))

(u,v)EE =1
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Ko Y(Wy(v) = min(y(u), y(v)),
subjectto > yl(u)=1; YueWT 1)
i=1 by using the following inequality:
Y(v)=1; Vj=1,...,ky€T (@ )
| _ 2 Y(Wy(v) = 2 y(u)
V() =0; VI#j,1=I, j=1 jes
i
i<k ueT 3) -:zywx vscii, 2, ...,k
(uy=1, VYuveEV 4 ) _ _
v v @ we obtain the following extended formulation (relaxation)
YU =0, Yu vEV ) of the multiway cut problem:
yiuy €{0,1}; VYu veV. (6) (EF1)  Zegg=min > c(u, v)X(U, v)

(u,v)EE

Letx(u, v) = 1 — Zf_; Y(u)y(v), ¥ (u, v) € E. Let . _ _
1Z\ denote the value of a minimum multiway cut. It is Subjectto  x(u, v) + > y(u) + X y(v) = 1,
clear thatlZ,,c = Z\g- Let (NLF) denote the correspond- ies i#S
ing con'tinuous re'laxation ofNF) [i.e., by removing the VSc{l1,2, ...,k (uveEE (7
integrality constraint (6)]. LeEZy,  denote the correspond-
ing optimal value. The following result shows that the and constraints (1)—(5). Here, the edge variabiés, o)
continuous relaxation obtained in this way does not lead to . AR ge Vs U
. . . . ) are considered the “natural” variables, while the node vari-
any deterioration of the optimal solution value: ; ) - .
ables,y!(u), are viewed as the auxiliary variables.

Even though EF1) has an exponential number of con-
straints, its linear relaxation can be solved in polynomial

Proof. Let (X, ¥) be an optimal solution to Problem time. This is because the associated separation problem is
(NLF). Nodeu is assigned to the component of with ~ solvable in polynomial time (see [5]). If we represent the
probability y'(u). Let x be the incidence vector of the product terms inLF) by a variable:
multiway cut obtained. Clearly,

Theorem 1. 1Zyc = ZyLg

Z(u, v) = y(u) y(v),
k

P{edge(u, v) in the multiway cuf = 1 — >, ¥i(u)y/(v). we obtain a second extended formulation:
=1

(EF2) Zem, = min >, c(u, v)x(u, v)

Hence, (WOeE

Elx(u, 9)] = P{x(u, v) = 1} subjectto  x(u, v) + S A(u, v) = 1,

k ]
=1- 2 Y(Wy(v) = X(u, v), V(u ) EE (8)
=1
Z(u, v) =y(u), Vij,(uv)€EE 9
SOE[Spee C(U, XU, 9)] = S pee CU, DX(U, o) =y, Vi (W) ©)
= ZuLe- The random process always produces a multiway ; ; .
cut solution, so its expected value cannot be smaller than the 2(u, ) =y(v), Vj, () EE (10)
minimum. Hence,IZyc = E[X(, ,ee CU, v)X(u, v)] ,- J, j ]
= Zy.e Since all multiway cuts are feasible ilNLF), 2(u, v) =y(W) +y(v) =1 Vj (uv) EE (11)

Zyig = 1Zye. ThereforelZyc = Zyig- |
and constraints (1)—(5). Under the condition that the weight
Linearizing the previous formulation, we immediately function ¢ is nonnegative, it is easy to see that the con-
obtain the extended formulation proposed by Chopra andtraints Z(u, v) = y!(u) + y/(v) — 1 are redundant.
Owen [5] using different considerations. In particular, sinceChopra and Owen [5] proved that
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Theorem 2[5]. When the cost function c is nonnegative, Proof. Let (X, y, Z) be an optimal solution toEF2).
Zerr = Zeeo Pick anyu, v € V. Notice thatZ(u, v) = min{ ¥y (u),

Y(v)}. Let A = {j : ¥(u) = y¥(v)} and A° be the

In contrast to EF1), the formulation EF2) involves — complement. Now, X, ¥, 2) must satisfy
only polynomially many variables and constraints. In the

do not distinguish betweerEF1) and EF2).

sequel, we will assume thaeg = 0 for alle € E and so we x(u, v) + > 2(u, v) = 1= yi(u)
j i

Now, we derive a third extended formulation, equivalent
to (EF2), not previously considered. This formulation will
be used in the sequel in the analysis of the tightness of the
formulations considered in this section.

SinceZj_; Y'(u) = 1 in (NLF), we can write X(u, v) + X 2(u, v) = 1= 2 yi(v).
j i
k k
x(u, v) = >, yi(u) — > yi(u)yi(v). Adding them together we get
j=1 =1

2X(u, v) +2 X 2(u, v) = X Y(u) + X ¥(v).
' ' j

Replacingu by v, we get i i

K K Hence,
x(u, v) = 2, Yi(v) — 2 YW Y(v).
i= i=t 2x(u, v) = 2[V(w) — Z2(u, »)] + 2[¥(v) — Z(u, v)].
i i

Adding these two equations together yields

k
2x(u, v) = 2[Y(u) + yi(v) — 2y(u)y(v)].

Now,

y(u) +y(v) = 2y(u)y(v) = [y'(u) — y(v)|

as long asy/(u), y!(v) = 1. Thus, we get the following
convexprogramming formulation:

If j € A then|y'(u) — y(v)| = Y(u) - Z(u, v);
otherwise,|y'(u) — y/(v)| = y'(v) — Z(u, v). Hence,

2%(u, v) = X[V — Z(u, v)] + D[¥(v) — Z(u, v)]

JEA jeAe

= 2 (W) - ¥l

Any optimal solution to EF2) is thus a feasible solution to
(EF3).

Now suppose that, y) is an optimal solution toEF3).
Pick anyu, v € V. DefineZ(u, v) = min{y'(u), ¥'(v)}.

(EF3) Zees=min >, c(u, v)X(u, ) We show that §, ¥, 2) is feasible for EF2).
(uneE LetA = {j: ¥(u) = y(v)} and A° be the complement.
Then,

subjectto  X(u, v) = >, |yi(u) — Yi(v)],

- 2 [¥(w) = §(v)]
ViwoeE (12) = SI¥W - Y] + S0 - ).

jeA jen

and constraints (1)—(5)EF3) can be turned into a linear

program using the usual technique of introducing extra
variables [i.e., replach/(u) — y'(v)| by w/(u, v) and add

Also,

the constraintsv' (u, v) = y/(u) — y(v), W(u, v) = y/(v)

— YUl

22 2(u,0) =22 ¥(v) + 2 X y(u).
i

jeA jeac

Theorem 3. When the cost function ¢ is honnegative £

= Zges

Since X(u, v) = = [y(u) — ¥(v)], it follows that
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2%(u, v) + 2 2, 2(u, v) = 2[Y(u) — V(v) + 2§(v)] 2 2 Y= 2 2 Y
j jEA reN*(v) jeSr,v) ueN~(v) jESu,v)
+ D[V(0) - P(u) + 25i(u)] = 2. = 2 1= X Y.
jenc UEN~(v) j&S(v,u)

So, an optimal solution ta5F3) is feasible for EF2). ] Hence, we have

By projecting out the auxiliary variables in these ex- ~— 2 2 yw+ 2 {1- 2 Y(}=0. (13
tended formulations, we can derive the standard formula- "<\ /€5 VENT@ es
tions involving edge variables alone as well as several ne
valid inequalities for the multiway cut. This is described in
the next theorem.

%n the other hand, each terminal node has degree atgjeast
and for each neighbar of a terminal node,

_ _ X(vj, u) = 1 — yi(u).
Theorem 4. Let L denote a subgraph of G which contains
some terminal nodes € T, which we label asy,, . . . , v, So,
and at least one nonterminal node & V\T. Suppose that
the edges of L can be oriented in such a way that there are
exactly g internally node disjoint paths from eaghto w,
thatis, forallj= 1, ...,p, all the paths fromy, to w are
node-disjoint except for the nodesand w. Then,

> X(y,w=q-— X yiu).

UEN" () ueN"(v)

For the nodew, sincew has no out-neighbor, and each
terminal has exactly internally disjoint paths tav,
2 x(@=q(p-1)
e<EQ) > 2 Yw=qgXyw=aq
reN*(w) jESrw) i
is a valid inequality for the multiway cut problem which is
contained in the projection qfEF1) onto the space of the By (13),

X variables.
. o . . 2 x(u, v)

Proof. Itis not difficult to show that the above inequality ., e,
is valid. We prove a stronger result in that it is actually
contained in the projection oEF1). Consider an orienta- = > {1- 3 vyi(v)— D vyiu}
tion of the edges of so that there arg (fixed) internally e=(UnEEL) iesiu) ¢S
disjoint directed paths from each terminal nagléo w. For
each edgel, v) oriented fromu to v, let S(u, v) denote the =qp+ > (— 2 2 (v
set of terminal nodes which use this edge along one of their vEyprw  TEN*() JESIY)

g paths tow. We have, from EF1), _
+ 2 {1- X Y@

UEN=(v) jeS(vu)

XU, v)=1- 2 yi(v)— 2 yiu).
HESuo ety -2 2 Yyw=gp-—q

reN*(w) jeSr,w)

Note that ifv # w thenS(u,, v), S(u,, v) are disjoint, since

the g paths from each terminal node o are internally Hence, the result follows. "
disjoint. LetN*(v), N~ (v) denote, respectively, the set of _ _
in-neighbors and out-neighbors ofunder the orientation. As an example, pick any two nodesandug in T and let

Let u € N (v). Note that the set{: j € v, u)} is L be any path of length not less than 1 between them. The
contained inU{j : j € (r, v), r € N"(v)}. SinceS;  theorem implies that
yi(v) = 1, and

> Xe= 1.

eeL

U uen- oS0, U) = U rene ST, v),

If we apply the theorem to every path between every pair of
we have terminal nodes, we get thgath formulationof the multiway
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cut problem. To describe this formulation, i, j) be the  all edges in the graph. Assuming the{u, v) = 2 if the

set of paths between terminatsand v;: edge (1, v) is incident to a terminak(u, v) = 1 otherwise,
thenZgp, = Zg, = 7.5, while it can be easily seen the
(PF)  Zpe=min D, CXe cost of any multiway cut is at least 8, that I€,,c = 16/
ecE 15Zyc.
The computational experiments of Chopra and Owen [5]
st. 2 x=1;, VpeEP}jVu, yET showed that the formulationg 1) and EF2) consistently
ecp yield high-quality bounds for the multiway cut problems.
The previous example shows that the gap can be as large as
0=x.=1. 16/15. We generalize the construction of this example to
give an example whose gap is asymptotically close to 10/9.
As another example, pick a tre®@on G all of whose Define the graptG with nodes denoted,, v,, ..., v,
leaves are i and no terminal node is a nonleaf node. Call (terminals) andy; j, wherei # j, 1 < i, j = k. Note that
such a tree &-tree. Then, by the theorem, we get we assume; ; andy; ; to be indistinguishable. The edge set
of G conS|sts of edgeSz{ u; ;} for all j and {u; ;, u; \} for
S ox=|SNT -1, allk #j #i. Letc(u, v) = k — 1if (u, v) is incident to

a terminal; otherwisec(u, v) = 1. Whenk = 3, the

ecE(S
construction reduces to the precedlng example.
which are called the tree inequalities. Generating all tree Let y'(u; J) 52U Uy = 2, Z(u;j, v) = 3 for
inequalities gives us another formulation called thee  eachi = 1, ... k. Thus,x(u, v) = ; for all edges inG.

formulationthat was considered by Chopra and Rao [6] andThis yields a fractional P solution with cost
Cunningham [7]. To describe this formulation, #tbe the

set of all T-trees: k(k—1)?% k(k—1)(k—2)
Zerr = 5 + 2 . (14)

(TF)  Zgpe=min X cXe
E
. On the other hand, consider an optimum multiway cut

solution. LetT; denote the set of nodes in the same com-
ponent as the termina|. Let A; denote the number of nodes
in T, of the typeu; ; for somej, B; = |T;| — A;. Then, there
0=x.=1. are exactlyk(k — 1) >k, A edges with cosk — 1 in

the cut. Furthermore, there are at ledst 2 — A)(A)

In the same way, one can derive the odd-wheel inequaledges of the typed; ;, u; \} in the cut. For eachy; ;, there
ities and bipartite inequalities. These are known to be facetdre &k — 2) other ne|ghbors of the typg .. Hence, there

of the multiway cut polytope. (See Chopra and Rao [6]). are atleastk — 2)2; A; — 2 3, B, edges of the type
{u; ;, u. .} in the cut, the Iast term arising because there are
T

. . at most B, edges between the nodes enumerated;mnd
2.1. Fractional Extreme Points B; which do not belong to the cut. Note that each edgg {

The extended formulations considered above are rathéti in the cut will be counted twice in this way as we vary

powerful as their projections contain a large collection ofoVeri. Hence, we have

facet-defining inequalities. The following example, taken

from Cunningham [7], shows, however, that there are frac- K

tional extreme points inEF1) and also EF2). 1Zye= (k — 1)(k(k — 1) — E A) + %{E k—2-A)
For the above example, nodes 1, 3, and 5 are the terminal .,

nodes. We have the following fractional extreme point:

st. D> X=|SNT|-1; SET

ecE(S

y(i)=1,y(i+1)=y(@{i-1)=2(>,i+1) X (A)+ k-2 A-2> B} (15

=723i0,i-1)=2(0i-1,i+1 = %'=3,5; - -

k

1 _ 109 — \/1 _ 1 k
y(l)—l,y(z)—Y(G)—Z(liz) Z(k—l)k(k_l)_z E
=7(1,6)=26,2 =3 -1 1

2
I

k
- > B. (16)

andy, z = 0 otherwise. By this choice of, z, x(e) = %for SinceXr_, T, = SK (A, + B)) = k(k — 1)/2, we have



108 BERTSIMAS, TEO, AND VOHRA

e Z(u, u) + Z(v, W) = Z(u, v) + Z(u, w),
e 2, U) + Z2(v, v) + ZW, W) = 1 + Z(u, v) + (v, W)
+ 2(u, w).

Unfortunately, these valid inequalities do not cut off the
fractional extreme point of Figure 1.

3. RELATION BETWEEN THE MULTIWAY
CUT AND THE INDEPENDENT SET
PROBLEM

In this section, we establish that the multiway cut problem
on G can be solved as an independent set problem on a
related graph(G). We then use this connection to establish
a new stronger extended formulation for the multiway cut
problem.

Fig. 1. An example with fractional extreme points. We first describe the underlying intuition for our formu-
lation. Consider a multiway cut solution For each termi-
nalv (j = 1,...,k), there is a set of nodes 1@ which

> A? belongs to the same partition as terminalLet E; be the set
of edges induced by these nodes (and termif)alClearly,
1Zye =k = o + 0(K). the union of these edges (0\jgfis the complement of those
edges in the multiway cut solution. We attach a label to
these edges, with labphssigned to edges in the &t We

will construct a new graph(G) such that nodes in this

graph correspond to the edges (with a label attache@®). in

Furthermore, using edges in a multiway cut solution, and by

It is easy to see thal; A? is maximized when

e The nodeu; ; belongs to eithef; or T;.

o A # AIFT # . selecting the labels appropriately, we can obtain a corre-
sponding independent set i(G).
Hence, Formally, given a graplG, let I(G) denote the graph
with node set
k3
2 AP=12+22+ .. .+ (k—1)2= 37T o(k®). {(u, v, j) : (u, v) € E(G),
| 1,2, .. KN(u u i) i #], (g, U) € EG))

Using this bound, we havéZ,,c = [(5k%)/6] + o(k®).

Thus, 1Z,,/Zer, = 10/9 asymptotically. Note that nodes of the typey( u, i) with i # j do not exist

in 1(G) since the edgey, u) will never be in the same
partition as terminab;. Let the edge set df{G) consist of
2.2. Connection with Quadratic Zero-One edges of the type
Programming

Ug, Wy, 1), (Uy, Wy, J)) :
To strengthen the formulations further, we can considef{(( 1 Wiy 1), (Uzy Wo, )

stronger linearizations of the quadratic teryigu)y(v). i # J; {ug, wab 0 {up, wot| = 13

The problem of linearizing quadratic terms of this type has

been addressed within the context of unconstrained quaFhus, two nodes ih(G) are adjacent if the corresponding
dratic zero-one programming problems, leading to the Booledges inG are adjacent, unless the label attached to the
ean Quadric polytopeBQP) (see Padberg [14] for a com- edges (inG) are identical.

prehensive treatment of the subject). The polyhedron Consider a maximal independent (stable) Isét | (G).
(BQP) is also called the correlation polytope by somelet F; = {(u, v) € E(G) : (u, v, j) € I}. The edge-
authors [12]. In this way, all valid inequalities known for the induced subgraph&[F;] are node disjoint in the grap@,
BQP can easily be converted to valid inequalities for thesincel is a stable set. Moreover, by maximality lgfeach
multiway cut problem. For instance, we can add the follow-nonterminal node must be a node in one of the subgraphs
ing valid inequalities: G[F;]. This partition induces a solution to the multiway cut
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problem and vice versa. For each noded, j) in I1(G), we  subjectto >, Z(u, wy) = 1;
assign costg(u, v). Then, the cost of the multiway cut in i
G and the cost of the maximum independent sé{@®) are

related as follows: V u, with w; adjacent tau  (20)

i(e C e -
1Zye= >, c(u, v) — maxXc(l) : | stable setif(G)}. 2 2(8)=1; ¢ edgesofacommon triangle (1)

(u,v)EE(G) .
=7 = i
The problem of finding a maximum weight stable set in 0=2(u =1 Vj(oeE (22)

[(G) can be formulated as . e .
(©) It is not difficult to see thatIND) is at least as strong as

(EF2) [and, hence,EF1, EF3)].
k
(IREF)  Zpee=max 2, 2 c(u, 9)Z(u, v) Theorem 5. If G is triangle free, then Zp = Zgpo; €lse,
(u»)EE j=1 Z - Z
IND — EF2-

Proof. Let (z) be an optimal solution td D). LetZ (e)
= 0 if e is incident to a terminab, with | # j. Lety!(u)
i#j,(uv)€E (17) = max, Z(e) where the maximum is taken over all edges
_ _ incident tou in G, and @, j) € V(I(G)). Lety!(y,) = 0 if
zZ(u,v) +Z(u,w) =1, i #]j, (U v),(uweE (18) | # . Then, the solution, y) satisfies

subjectto  Z(u, v) + Z(u, v) = 1,

Z(u,v) €{0,1, Vj,(u v) €E. (29) K
> Z(u, v) =1V (u, v) EE;
Let (REF) denote the linear relaxation ofREF). j=1
This correspondence has many interesting consequences:

As an example, since the multiway cut for fixkd= 3 is 2(u, v) = min(y'(u), y(v)) V (u, v) € E;
NP-hard, we obtain as a direct corollary that the maximum
independent set problem orkgartite graphK = 3) is also K
NP-hard.* In addition, many classes of facet-defining ine- S yi(uy=1VueWT;
qualities for the stable set problem can be interpreted (via -1
proper translation) as valid inequalities for the multiway cut
problem. Yi(v) =1Vj=1,...,k

For instance, a natural way to strengthd®EF) is to

include the maximal clique _inequa_lities (cf. [2]) for the |, (EF2), we can increase the valueyfo ensure equality
stable set problem. The maximal cliques (&) are of the 4t ~onstraints (1)=(3). In this way, the modified, §) is
form clearly feasible in EF2) with the same objective value as
Z,np- Hence,
{(u! Wll 1)1 LRI !(uv ka k)};
ZEF2 = ZIND-
where @, w;) € E(G) or
On the other hand, iG does not contain any triangles, the

{len, D), ..., (& K, constraints in EF2) imply that

wheree; € {(u, w), (u, v), (v, w)} are edges of a triangle K K
in G. 22U, w) = Xy = 1.

Putting all these together, we have the following valid =1 =1
relaxation for the multiway cut problem:

Hence,Zjnp = Zggs. n
(IND)  Zyp=min > c(u, )(1— >, Z(u, v))
(uweE i Consider the example as shown in Figure 1. Recall that

Y =1,y +1 =y -1 =2(,i+1
*We believe that this result is known but we have not been able to 1
locate any reference in the literature. =2'(,i-1)=2z(i-1,i+1) =3 i=1,3,5.



110 BERTSIMAS, TEO, AND VOHRA

This fractional optimal solution violates the triangle in- 3.1. Polynomially Solvable Cases of the
equality Multiway Cut Problem

Chopra and Owen [5] showed thdK2) is integral when
742, 6) + %2, 4) + (4, 6) = 1. the underlying grapl® is a tree. We show that this result is
a direct corollary of Theorem 7. We will need some defi-
. nitions and terminology from graph theory. L&tandH be
Hence, (ND) can be strictly stronger than those formula- two distinct graphs, each containing a clique of dizé et

tions considered in the previous section. . o .
: . . K I f andH, r tively. B
In general, the clique constraints for the independent selt<1 andK, be cliques of siz& in G andH, respectively. By

problem cannot be separated in polynomial time (unkess gluing G andH together on &-clique, we obtain a new
= NP). In this case, because of the specific naturg G, graph L with V(L) = (V(G)\V(K,)) U (VHNV(K,))

we can separate the clique constraints({@) in polynomial L VIK), whereK is a clique of size, andé,: V(K,) = VIK)
time. Hence, ND) is solvable in polynomial time via the and: V(Ky) = V(K) are 1-1 maps, wite = (u, ) & E(L)

ellipsoid algorithm. if and only if

u, ve V(K), (u,v) € E(G)UE(H), or
Theorem 6. (IND) is solvable in polynomial time.

Proof. For each nodel in G, the inequalities u, v both inV(K), or

S Z(u, w) = 1, V w, adjacent t vEV(K), UEV(GW(K), (U ¢;'(v) EEG), or
Z(u, wy) = 1, V w, adjacent ta,

I vE V(K), ueVHN\V(K), (u, ¢p,%(v) € E(H).

are satisfied if and only if the inequality is satisfied by a Theorem 8[5]. Formulation(EF2) is integral when G is
single choice ofw;. In particular, choose a tree.

Proof. Since G does not contain any trianglesE2)
w; = argmax Z(u, w) : w adjacent tau}. coincides with the formulationlD). It suffices, then, to
show thatl (G) is perfect. IfG corresponds to a star an
o ) N ] ) + 1 nodes, ther(G) is a completen-partite graph and
Similarly, the inequalities corresponding to the triangles can bg,arefore perfect. Since all tre@are formed by “gluing”
checked by verifying only for the casg = argmax{Z(€),  star graphs on cut-edgé$G) is formed by clique-gluing of
2(), 2(9)}- " complete multipartite graphs. Since clique-gluing opera-
. tions preserve perfection (cf. [2])G) is perfect, wher& is
It follows directly from the theory of perfect graphs ([2]) g tree. Therefore,IND) and, hence,EF2) is tight in this

that instance. "
Theorem 7. If | (G) is a perfect graph, formulatioiND) This result is interesting, as the multiway cut problem
for the multiway cut problem is integral. over trees has an important generalization which arises in

Note that fork = 2 (i.e., for thes-t cut problem) (G) is biomathematics. The generalized multiway cut problem in-
bipartite and is therefore a perfect graph. Thus|[¥) is  troduced in Erdos and Szely [9] is as follows: Given a
always integral in this case. graphG = (V, E) and a partiak-coloring of the nodes, that

Other valid inequalities for the multiway cut problem can is, a subseV’ C V and a functiorf : V' — {1, ..., k},
be constructed from facets for the independent set probleniind an extension dfto V such that the total weight of edges
For example, the well-known odd-cycle inequalities for thewith different colored endpoints is minimized. Erdos and
stable set problem translate to SZkely [9] contains a nice illustration of how this problem

arises naturally in the study of evolutionary trees. They also
constructed a polynomial time dynamic programming algo-
o rithm for the generalized multiway cut problem on trees. In
> 2%(e) = 0cCl/2G (23)  (EF2), this amounts to setting
i=1
y™(u) =1, y(u) =0 otherwise,
whereC = {(e,, j(i))}|_, is an odd cycle in(G). Itis well
known (see [11]) that the odd-cycle inequalities can befor eachuin V'. Since faces of an integral polytope are also
separated in polynomial time. integral, the generalized multiway cut problem is also
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splitting the terminal to two Theorem 10. If the set of terminals T in G intersects every
cycle of length greater or equal # then the multiway cut
/\ problem is solvable in polynomial time.
Proof. By splitting terminals as in Erdos and ‘&&ty [9]
(see also Fig. 2), the multiway cut problem in the above
theorem can be transformed to a generalized multiway cut
problem on triangular cactus. Hence, the theorem follows

immediately from Lemma 9. For details, we refer the read-
ers to the original proof in [9]. ]

4. TIGHTNESS OF THE LP RELAXATIONS

®  T.rminal node In this section, we analyze the tightness of the various LP
relaxations proposed in the previous sections. Note that the
Fig. 2. Splitting of terminals. technique of Cunningham [7] implies a bound of 2 for these

formulations, but his analysis uses the result of lsas
multiflow theorem. On the other hand, Dalhaus et al. [8]
solved by the modified version oEF2) whenG is a tree.  proposed a 2-approximation algorithm for the multiway cut
Using this notion of a generalized multiway cut, it follows problem. We show that the technique of Dalhaus et al. can
directly (see Erdos and Szely [9]) that if the set of be suitably extended to analyze the LP relaxations obtained
terminalsV(H) in G intersects every cycle iG then by  above. This is achieved via a suitable randomized rounding
splitting the terminals into multiple terminals with the same extension of their heuristic. The rounding approach, coupled
colors (see Fig. 2 for the splitting operation) we can transwith better combinatorial approximation algorithms for the
form the multiway cut problem orG to a generalized 4- and 8-terminal cut problems, led naturally to new and
multiway cut problem on a forest. Hence, the multiway cuttighter LP relaxations for the corresponding problems.
problem is solvable in polynomial time if the terminals
intersect every cycle i®. Randomized Rounding Heuristic H.
In the rest of this section, we exploit the stronger formu-
lation (IND) to improve on these results.
Let G be a graph that can be obtained via node gluing o
triangles and edges (see Fig. 3 for an example). We ca
such graph driangular cactus.

fl. Solve the relaxationHF3), obtaining an optimal solu-
tion (X, y).

5. Generate a random numhgyuniformly between 0 and 1.

3. For each node andj, sety!(u) to 1 if U = y/(u) and
0 otherwise. In this way, se§ (not necessarily disjoint)

Lemma 9. If G is a triangular cactus, (G) is perfect. are generatedj = 1,..., k, such that§ contains

terminal nodey; but notv; for i # j [recall thaty'(v;)

Proof. We only sketch the main idea of the proof. we = O if I # j]. Computec(3(S)). Let Sy, = argmax

proceed by induction, using the fact thatis built up by c(8(S))-

node gluing of edges and triangles. The case wBes a 4 The proposed solution is the set of edges in

triangle or an edge is trivial. Suppose now tkats formed D=Uj:545,.0().

by node gluing of 2 triangular cads, andG, at the node

v. LetM be a node-induced subgraphl¢G). LetH(M) be

the corresponding set of labeled edgesGn Let q(M) node

denote the size of a maximum cliqueNh We only need to gluing

show that the chromatic number bf is at mostq(M). All ¢~

the labeled edges ikl(M) that are incident ta induce a /

complete multipartite subgraph ifG) which can be col- < ode

ored using at mogy(M) colors. With these nodes colored, b gluing

the problem reduces to that of two smaller coloring prob- /

lems onM N I(G;) andM N I(G,). It follows from the

induction hypothesis that each of these two problems can be

colored using at mogj(M) colors. | Fig. 3. Triangular cactus.

triangular cactus
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Clearly, the solution is feasible for the multiway cut problem, also within a bound of 2(+ 1/k). However, our

problem. LetZ,, be the value of the heuristic.

Theorem 11. For ¢ = 0, IZ,c = E[Z] = 2(1 — 1K) Zgps.

Proof. Clearly, the value of the multicuD is

c(D) = (1 — 1/k) >, c(8(S)).
j

Since

P{(u, v) € 8(S)} = P{(y'(u) = 1, y((v) = 0) U (y/(u)
=0,y(v) = 1)} = P{min(¥(u), y(v)) = U
= max(y'(u), ¥(v)} = [y(u) — ¥(v)|,

we have

k
E[D c(3(S)]= > > c(u, v)P{(u, v) € &(S)}
j

j=1 (uv€EE

=2 2 cu, 9)[y(u) - (o).

j=1 (uv€EE

From (EF3), we know that

k
> (u) — Y(v)| = 2%(u, v).
j=1

Hence,

E[> c(8(§)H]=2 > c(u, »)X(u, v).
j

(u,0)EE

Therefore,
E[Z4] = E[c(D)] = (1 — 1/K) E[ 2, c(8(S))]
i

= 2(1 - 1/k) ZEF3' |

result is a little stronger in that the bound on the heuristic
solution is in terms of the linear programming relaxation
and not the optimal integer solution.

4.1. The Case k =4

Dalhaus et al. [8] showed that the approximation boglnd
can be improved further %Jfor the 4-terminal cut problems.
By a randomized version of their heuristic, we propose next
a linear relaxation attaining the same worst-case bouéd of
for the 4-terminal cut problem:

(4T)  Zg;=min > c(u, v)x(u, v)

(uv€EE

4

subjectto (U, v) = O, [yX(u) + Y () — y*(v) — Y(9)];

V(U v) EE (24)

and constraints (1)—(4). Note that the above relaxation is
valid only for the casek = 4. In this regard, it is less
general than the formulation irEE3). Furthermore, this
convex programming problem is essentially a linear pro-
gram. We keep this form as it makes the following analysis
more transparent. LdiZ,; be the corresponding optimal
integer programming value.

Theorem 12.1Z,7 = 3 Z,r.

Proof. Let (X, y) be an optimal solution t&,;. We
generate randomly cuts of the fofa(1, i), which separates
terminalsv,, v; from the other two terminals, in the fol-
lowing way:

e F(1,i) = &. GeneratdJ randomly on [0, 1].
o If yY(u) + y'(u) = U, thenF(1, i) < F(1,i) U {u}.
Repeat for allu.

Note that the edgeu( v) is in the cutseE(1, i) only when

yi(u) + y'(u) = U, yX(v) + y'(v) < U; or

Using the conditioning method (see Alon and Spencer

[1]), we can make Step 2 of the randomized heuristic
deterministic. So, we obtained an approximation algorithm
that deliverg a multivay cgt at most .tvyic.e the optimal. Let 5(S) denote the set of edges in the cut Set
Another easier way to obtain a deterministic 2-approxima-
tion algorithm is to find, for eacl, a minimum cut con- .
taining the terminab; but not the other terminals, this time E[c(8(F(1,))] = 2 c(u, v)
among the setsq, Uy, Uy, Us, . . . } with the nodes ordered )
(in nonincreasing order, breaking ties arbitrarily) according

to the value of/(u;). Dalhaus et al. [8] constructed directly

y (v) +y'(v) = U, y u) + y'(u) < U.

X |yH(u) + y'(u) — yH(o) - ¥(0)l.

a combinatorial algorithm to approximate the multiway cutNow, since the union of any two of the three cuts generated
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is a valid 4-terminal cut, by taking the minimu#y, of the  Theorem 13. Z,,, = 1Z,,. Z\;, can be computed in poly-
three feasible solutions, we have nomial time.

. Proof. Consider the incidence vectarof any multicut
_2 . 4 solution. Lety!(u) = 1 if nodeu and 10, € V(H) lie in the
=3 2 E(c(8(F(1, 1)) =3Zar " same component in the multicut. L&tu, v) = y'(u) y'(v).

N If u, v lie in the same compone@, then

Remark. Similarly, the combinatorial approximation algo- . o B _
rithm for the 8-way-cut problem [8] can be turned into an %yl(u) + Esy'(v) =[V(H)ncl = , %4 2(u, v).
LP formulation with equivalent bound to the 8-way-cut '© e eV

problem. o )
If u, v lie in two different component€, andC,, thenV

S C V(H):

5. THE MULTICUT PROBLEM
2 Y(u) + X Y(0) = 2a(H).

The results in the previous section have natural extensions jes jes
to the more general multicut problem. The technique of
Dalhaus et al. [8] can be extended to yield a(B)(1  Hence,
— 1/k) approximation algorithm for the multicut problem,
wherea(H) denotes the size of the maximum independent
set in the demand grapH. In contrast, Garg et al. [10] 2a(H)x(u, ) + E 2(u, 0) = 2 y(u) + 2 ¥i(v)
designed a®(log|V(H)|) approximation algorithm for this s Jes
problem. Neither bound dominates the other. The former _
can be much better in a dense graph, as in the case of tfi@ @ valid inequality. ClearlyS; y/(u) = a(H) is also a
multiway cut problem, wheréd is a clique. The bound Valid inequality. Since
obtained by Garg et al. [10] is via a natural linear relaxation
of the m_ulticut pr_oblem,_ based ona multicor_nmodity_ flow max >, yl(u) + > y(v) : SC A}
formulation. In this section, we introduce a different linear jes jes
formulation for the multicut problem, which can be viewed

as the LP counterpart for the extension of Dalhaus et al.’§s solvable in polynomial time (see [5]), we can soNé2)

combinatorial algorithm: in polynomial time by the ellipsoid method. m
(M2)  Zy,=min X c(u, v)x(u, v) (25) We next apply the same randomized rounding heuristic
(uo<E H to the optimal solution of (12):
subjectto  2(H)x(u, v) + >, Z(u, v) = > yi(u) 1
j jes Theorem 14. 12, = E[Z] = 2a(H)<l - |V(H)|>Z“"2'
J .
+ Esy(v), (U v) €E SCV(H) (26) Proof. Let (X, y, Z) be an optimal solution toM2).
e Then,
Z(u, v) =y(u), Vj,(u v €EE 27) _ _
| _ E[X c(3s)]=2 2 cu o) - ¥
Z2(u, v) =y(v), Vij,(uv)€E (28) i i (UYEEG)
2 YW =aH), Yuev (29) = 2 cu o X (Y -2, v)
j (u,0)EE(G) JET(U,v)
Y(s)=1, V]| (30) + 2 (Y(v) = Z(u, v)
jT(u)
y(v) = 0; if (v, 5) € E(H) (31)
_ =2a(H) > c(u, 9)X(u, )
0=x(u, v),y(uy=1, Vj,(u v) €EE. (32) (UY)EEG)

Let 1Z,, denote the value of an optimal multicut solution. = 2a(H) Zy,.
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By discarding the se&&,,,with the maximum cut, we obtain  [2]
a multicut solutionD’ such that
(3]
E[Z4] = E[c(D")] = (1 — 1K) E[ > c(8(S))]
i

1
= 2a(H)<1 - |V(H)|> Zyo. M [4]

(5]
6. CONCLUDING REMARKS -
In this paper, we proposed several new reformulations for
multiway cut and multicut problems. We showed that these
formulations are derived from a tight nonlinear formulation.
By reducing the multiway cut problem to the maximum
independent set problem, we also bring the tools of perfect[s]
graph theory to bear on several solvable instances of the
multiway cut problems. Furthermore, we show that the [9]
well-known Dalhaus et al. algorithm can be used in a
randomized rounding framework to analyze the worst-cas
behavior of these formulations. Several problems are le
open in the paper; for instance, we have not been able to
close the gap between the upper-bound 2 and the worst-caﬁel]
example which attains a bound of 10/9 asymptotically.
Furthermore, we have not been able to analyze whether the
stronger formulation IND) yields a better bound in this [12]
case.

(7]

10]
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